CBSE Board Class XI Mathematics Sample Paper – 3

Time: 3 hrs

Total Marks: 100

General Instructions:

- 1. All questions are compulsory.
- 2. The question paper consist of 29 questions.
- 3. Questions 1 4 in Section A are very short answer type questions carrying 1 mark each.
- 4. Questions 5 12 in Section B are short-answer type questions carrying 2 mark each.
- 5. Questions 13 23 in Section C are long-answer I type questions carrying 4 mark each.
- 6. Questions 24 29 in Section D are long-answer type II questions carrying 6 mark each.

SECTION – A

- **1.** In \triangle ABC, a = 18, b = 24 and c = 30 and m \angle C = 90°, find sin A.
- **2.** If f(x) is a linear function of x. f: $Z \rightarrow Z$, f(x) = a x + b. Find a and b if { (1,3) , (-1, -7) , (2, 8) (-2 , -12) } \in f.
- **3.** Find the domain of the function $f(x) = \frac{x^2 4}{x^2 8x + 12}$
- **4.** With p: It is cloudy and q: Sun is shining and the usual meanings of the symbols: \Rightarrow , \Leftrightarrow ,

 \sim , \wedge , \vee , express the statement below symbolically.

'It is not true that it is cloudy if and only if the Sun is not shining.'

OR

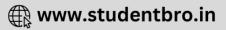
Write negation of the : Every living person is not 150 years old.

SECTION – B

5. What are the real numbers 'x' and 'y', if (x - iy) (3 + 5i) is the conjugate of (-1 - 3i)

OR

Find modulus of (3 + 4i)(4 + i).



6. A pendulum, 36 cm long, oscillates through an angle of 10 degrees. Find the length of the path described by its extremity.

OR

The area of sector is 5.024 cm² and its angle is 36°. Find the radius. (π = 3.14)

- **7.** Find the sum of 19 terms of A.P. whose nth term is 2n+1.
- **8.** Find the LCM of 4!, 5! and 6!

OR

Express $\frac{1}{(2+i)^2}$ in the standard form of a + ib.

9. Find the total number of rectangles in the given figure

- **10.** Find the sum of the given sequence uptill the n^{th} term: 1.2 + 2.3 + 3.4 + ...
- **11.** In a group of 400 people, 250 can speak Hindi and 200 can speak English. Everyone can speak atleast one language. How many people can speak both Hindi and English?
- **12.** If $\Sigma n = 210$, then find Σn^2 .

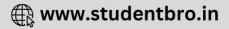
SECTION – C

- **13.** An equilateral triangle is inscribed in the parabola $y^2 = 4ax$, where one vertex of the triangle is at the vertex of the parabola. Find the length of the side of the triangle.
- **14.** Prove that: $(\cos 3x \cos x) \cos x + (\sin 3x + \sin x) \sin x = 0$

OR

Simplify the expression: sin7x + sinx + sin3x + sin5x

15. If the sum of an infinite geometric series is 15 and the sum of the squares of these terms is 45, find the series.



16. Let A = {a, b, c}, B = {c, d} and C = {d, e, f}. Find(i) A
$$\times$$
 (B \cap C)(ii) (A \times B) \cap (A \times C)(iii) A \times (B \cup C)(iv) (A \times B) \cup (A \times C)

17. If
$$f: \mathbb{R} \to \mathbb{R}$$
; $f(x) = \frac{x^2}{x^2 + 1}$. What is the range of f?

- **18.** What is the number of ways of choosing 4 cards from a pack of 52 playing cards? In how many of these
 - (i) four cards are of the same suit
 - (ii) four cards belong to four different suits
 - (iii) are face cards
 - (iv) two are red cards and two are black cards
- **19.** Evaluate: (99)⁵ using the Binomial theorem

OR

Find the ratio of the co-efficient of x^2 and x^3 in the binomial expansion $(3 + ax)^9$

20. If
$$x - iy = \sqrt{\frac{a-ib}{c-id}}$$
, find $(x^2 + y^2)^2$.

OR

Let
$$z_1 = 2 - i$$
 and $z_2 = -2 + i$, then find
(i)Re $\left[\frac{z_1 z_2}{\overline{z_1}}\right]$ (ii)Im $\left[\frac{1}{z_1 \overline{z_2}}\right]$

- **21.** Find the roots of the equation $3x^2 4x + \frac{10}{7} = 0$ **22.** Find the domain and range of the function : $f(x) = \frac{1}{2 - \sin 3x}$
- **23.** Plot the given linear in equations and shade the region which is common to the solution of all inequations $x \ge 0$, $y \ge 0$, $5x + 3y \le 500$; $x \le 70$ and $y \le 125$.

CLICK HERE

R www.studentbro.in

SECTION – D

24. The scores of two batsmen A and B, in ten innings during a certain season are	given
below, Find which batsman is more consistent in scoring.	

А	В
32	19
28	31
47	48
63	53
71	67
39	90
10	10
60	62
96	40
14	80

OR

The mean and variance of 7 observations are 8 and 16 respectively. If 5 of the observations are 2, 4, 10, 12, 14, find the remaining two observations.

- **25.** From the digits 0, 1, 3, 5 and 7, how many 4 digit numbers greater than 5000 can be formed? What is the probability that the number formed is divisible by 5, if
 - (i) the digits are repeated
 - (ii) the digits are not repeated

26. If
$$x \in Q_3$$
 and $\cos x = -\frac{1}{3}$, then show that $\sin \frac{x}{2} = \pm \sqrt{\frac{2}{3}}$.

If
$$\tan\left(\frac{\pi}{4} + \frac{\theta}{2}\right) = \tan^3\left(\frac{\pi}{4} + \frac{\alpha}{2}\right)$$
 prove that $\sin\theta = \frac{3\sin\alpha + \sin^3\alpha}{1 + 3\sin^2\alpha}$

27. (i) Find the derivative of the given function using the first principle:

$$f(x) = \cos\left(x - \frac{\pi}{16}\right)$$

(ii) Evaluate:
$$\lim_{x \to \frac{\pi}{2}} \frac{5^{\cos x} - 1}{\frac{\pi}{2} - x}, x \neq \frac{\pi}{2}.$$

Get More Learning Materials Here : 📕

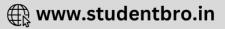
🕀 www.studentbro.in

28. If three lines whose equations are $y = m_1x + c_1$, $y = m_2x + c_2$ and $y = m_3x + c_3$ are concurrent, then find (i) the condition of concurrence of the three lines(ii) the point of concurrence.

OR

A beam is supported at its ends by supports which are 14 cm apart. Since the load is concentrated at its centre, there is a deflection of 5 cm at the centre and the deflected beam is in the shape of a parabola. How far from the centre is the deflection of 2 cm?

29.Prove by using the principle of mathematical induction that $(x^{2n} - y^{2n})$ is divisible by (x + y).



CBSE Board Class XI Mathematics Sample Paper – 3 Solution

SECTION – A

- **1.** Since $m \angle C = 90^{\circ}$, therefore $\sin A = \frac{a}{c} = \frac{18}{30} = \frac{3}{5}$
- **2.** f(x) = ax + b

 $(1, 3) \in f \Rightarrow f(1) = a.1 + b = 3 \Rightarrow a + b = 3$ $(2, 8) \in f \Rightarrow f(2) = a.2 + b = 8 \Rightarrow 2a + b = 8$ Solving the two equations, we get a = 5, b = -2a = 5, b = -2 also satisfy the other two ordered pairs $f(-2) = 5(-2) - 2 = -12 \Rightarrow (-2, -12)$ $f(-1) = 5(-1) - 2 = -7 \Rightarrow (-1, -7)$ Therefore the values are a = 5 and b = -2.

3.
$$f(x) = \frac{x^2 - 4}{x^2 - 8x + 12}$$

For f(x) to be defined, $x^2 - 8x + 12$ must be non-zero i.e. $x^2 - 8x + 12 \neq 0$
 $(x - 2)(x - 6) \neq 0$
i.e. $x \neq 2$ and $x \neq 6$
Therefore domain will be $R - \{2, 6\}$
So domain of f = R - $\{2, 6\}$

4. ($\sim p \Leftrightarrow \sim q$)

OR

There exists a living person who is 150 years.

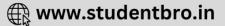
SECTION – B

5.
$$(x-iy)(3+5i) = -1 - 3i = -1 + 3i$$

$$\Rightarrow (x-iy) = \frac{-1+3i}{(3+5i)} = \frac{(-1+3i)(3-5i)}{(3+5i)(3-5i)} = \frac{-3+5i+9i-15i^2}{(9-25i^2)}$$

$$= \frac{-3+5i+9i+15}{9+25} = \frac{12+14i}{34} = \frac{6+7i}{17} = \frac{6}{17} + \frac{7i}{17}$$

$$\Rightarrow x = \frac{6}{17}; y = -\frac{7}{17}$$



OR
(3 + 4i)(4 + i) = 12 + 3i + 16i + 4i² = 12 + 19i - 4 = 8 + 19i
$$|z| = \sqrt{8^2 + 19^2} = \sqrt{64 + 361} = \sqrt{425} = 5\sqrt{17}$$

6. Length of pendulum is 36 cm long Angle of oscillation = 10 degrees 180 degrees = π radians

so, 10 degrees=
$$\frac{\pi}{18}$$
 radians
 $\Rightarrow \theta = \frac{\pi}{18}$ radians

So using this formula $l = r\theta$ and substituting the values of r = 36, $\theta = \frac{\pi}{18}$ radians

we get,

$$\ell = 36 \text{ x} \frac{\pi}{18} = 2 \text{ x} (3.14) = 6.28 \text{ cm}$$

OR

Area of sector =
$$\frac{1}{2}r^2\theta$$

 $\frac{1}{2}r^2\theta = 5.024$
 $\frac{1}{2}r^2 \times \frac{36}{180}\pi = 5.024$
 $r^2 = 5.024 \times \frac{180 \times 2}{36 \times 3.14}$
 $r^2 = 16$
 $r = 4$ cm

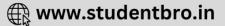
7. Let a be the first term and d be the common difference

$$T_{n} = 2n+1$$

a=3.....(T₁)
$$T_{2} = 5$$

d = 2(T_{2} - a)
$$S_{n} = \frac{n}{2}(2a + (n-1)d)$$

$$S_{n} = \frac{19}{2}(2 \times 3 + (19-1) \times 2) = 399$$



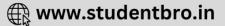
8. We have $5! = 5 \times 4!$ And $6! = 6 \times 5 \times 4!$ LCM of 4!, 5! and 6! = LCM of $\{4!, 5 \times 4!, 6 \times 5 \times 4!\} = 4! 6 \times 5 = 6! = 720$

OR

$$\frac{1}{(2+i)^2} = \frac{1}{4+4i+i^2}$$
$$\frac{1}{(2+i)^2} = \frac{1}{4+4i-1}$$
$$\frac{1}{(2+i)^2} = \frac{1}{3+4i}$$
$$\frac{1}{(2+i)^2} = \frac{1}{3+4i} \times \frac{3-4i}{3-4i}$$
$$\frac{1}{(2+i)^2} = \frac{3-4i}{9-16i^2}$$
$$\frac{1}{(2+i)^2} = \frac{3-4i}{9+16}$$
$$\frac{1}{(2+i)^2} = \frac{3-4i}{25}$$
$$\frac{1}{(2+i)^2} = \frac{3}{25} - \frac{4i}{25}$$

9.

To make a rectangle we need to select 2 vertical lines from given 6 lines and 2 horizontal lines from given 5 line so the number of rectangles so formed = ${}^{5}C_{2} \times {}^{6}C_{2} = 150$



10. 1.2 + 2. 3 + 3. 4 +...

$$a_{n} = n (n + 1) = n^{2} + n$$

$$S_{n} = \sum_{k=1}^{n} (k^{2} + k) = \sum_{k=1}^{n} k^{2} + \sum_{k=1}^{n} k$$

$$= \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2}$$

$$= \frac{n(n+1)}{2} \left(\frac{(2n+1)}{3} + 1 \right)$$

$$= \frac{n(n+1)(n+2)}{3}$$

11. Let H denote the set of people who can speak Hindi, and E denote the set of people who can speak English.

Given everyone can speak atleast one language, Therefore, $n(H \cup E) = 400$ and n(H) = 250, n(E) = 200 $n(H \cup E) = n(H) + n(E) - n(H \cap E)$ $n(H \cap E) = n(H) + n(E) - n(H \cup E)$

 $n(H \cap E) = 250 + 200 - 400 = 50$

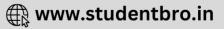
50 persons can speak both Hindi and English.

12.
$$\Sigma n = 210$$

 $\frac{n(n+1)}{2} = 210$
 $n(n+1) = 420$
 $20 \ge 21 = 420$ so $n = 20$
 $\Sigma n^2 = \frac{n(n+1)(2n+1)}{6} = \frac{420 \times 41}{6} = 2870$

SECTION – C

13. Let the two vertices of the triangle be Q and RPoints Q and R will have the same x-coordinate = k(say)



$$\int_{a}^{b} \int_{a}^{b} \int_{a$$

OR

$$\sin 7x + \sin x + \sin 3x + \sin 5x = (\sin 7x + \sin x) + (\sin 3x + \sin 5x)$$
$$(\sin 7x + \sin x) = 2\sin\left(\frac{7x + x}{2}\right)\cos\left(\frac{7x - x}{2}\right) = 2\sin\frac{8x}{2}\cos\frac{6x}{2}$$
$$= 2\sin 4x\cos 3x \qquad \dots (i)$$
$$(\sin 3x + \sin 5x) = 2\sin\left(\frac{3x + 5x}{2}\right)\cos\left(\frac{3x - 5x}{2}\right) = 2\sin\frac{8x}{2}\cos\frac{-2x}{2}$$
$$= 2\sin 4x\cos(-x) = 2\sin 4x\cos x \qquad \dots (ii)$$
From(i)and (ii)
$$(\sin 7x + \sin x) + (\sin 3x + \sin 5x) = 2\sin 4x\cos 3x + 2\sin 4x\cos x$$
$$= 2\sin 4x[\cos 3x + \cos x]$$
$$= 2\sin 4x\left[\cos(3x + \cos x)\right]$$
$$= 2\sin 4x\left[2\cos\left(\frac{3x + x}{2}\right)\cos\left(\frac{3x - x}{2}\right)\right] = 2\sin 4x\left[2\cos\left(\frac{4x}{2}\right)\cos\left(\frac{2x}{2}\right)\right]$$
$$= 4\sin 4x\cos 2x\cos x$$

15.Let the infinite geometric series be a, ar, ar², ...

The sum of the infinite geometric series is 15.

$$S_1 = \frac{a}{1-r}$$
$$\therefore \frac{a}{1-r} = 15$$

Squaring the terms of the above infinite geometric series we get, $a^2,\,a^2r^2,\,a^2r^4,\,...$

Also this new series is in geometric progression.

The sum of the squares of these terms is 45.

$$S_{2} = \frac{a^{2}}{1 - r^{2}}$$

$$\therefore \frac{a^{2}}{1 - r^{2}} = 45$$
Consider $\frac{S_{1}}{S_{2}}$:
$$\frac{S_{1}}{S_{2}} = \frac{\frac{a}{1 - r}}{\frac{a^{2}}{1 - r^{2}}}$$

$$\Rightarrow \frac{15}{45} = \frac{1 - r^{2}}{a(1 - r)}$$

$$\Rightarrow \frac{1}{3} = \frac{(1 + r)}{a}$$

$$\Rightarrow a = 3(1 + r)$$

Substitute the value of a in $S_{\scriptscriptstyle 2}$, we have,

$$S_{2} = \frac{a^{2}}{1 - r^{2}} = \frac{(3(1 + r))^{2}}{1 - r^{2}}$$

$$\Rightarrow 45 = \frac{9(1 + r)^{2}}{1 - r^{2}}$$

$$\Rightarrow r = \frac{2}{3}$$

10.20

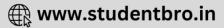
So the series is $5, \frac{10}{3}, \frac{20}{9}, ...$

16.
$$A = \{a, b, c\} B = \{c, d\} C = \{d, e, f\}$$

(i) $(B \cap C) = \{d\}$
 $\Rightarrow A \times (B \cap C) = \{(a, d), (b, d), (c, d)\}$
(ii) $A \times B = \{(a, c), (a, d), (b, c), (b, d), (c, c), (c, d)\}$
 $A \times C = \{(a, d), (a, e), (a, f), (b, d), (b, e), (b, f), (c, d), (c, e), (c, f)\}$
 $(A \times B) \cap (A \times C) = \{(a, d), (b, d), (c, d)\}$
(iii) $(B \cup C) = \{c, d, e, f\}$
 $A \times (B \cup C) = \{(a, c), (a, d), (a, e), (a, f), (b, c), (b, d), (b, e), (b, f), (c, c), (c, d), (c, e), (c, f)\}$
(iv) $(A \times B) \cup (A \times C) = \{(a, c), (a, d), (a, e), (a, f), (b, c), (b, d), (b, e), (b, f), (c, c), (c, d), (c, e), (c, f)\}$

17. Let
$$y = f(x) = \frac{x^2}{x^2 + 1}$$

 $x^2 \ge 0 \Rightarrow x^2 + 1 \ge 1 \Rightarrow \text{Denominator} \ge \text{Numerator} \Rightarrow y \le 1$
Now, $y = \frac{x^2}{x^2 + 1} \Rightarrow y(x^2 + 1) = x^2 \Rightarrow yx^2 + y = x^2 \Rightarrow x^2(y - 1) = -y$
 $\Rightarrow x^2 = \frac{y}{1 - y}$
 $\Rightarrow 1 - y \ne 0$
 $\Rightarrow y \ne 1$
Now, $x^2 = \frac{y}{1 - y} \ge 0$
Case1: $y \ge 0; 1 - y \ge 0$
 $\Rightarrow y \ge 0; 1 \ge y \text{ or } y \le 1, \text{but } y \ne 1$
i.e $y \in [0, 1)$
Case2: $y \le 0; 1 - y \le 0$
 $\Rightarrow y \le 0; 1 \le y \text{ or } y \ge 1$
Not possible \therefore Range of $f(x) = [0, 1)$



18. The number of ways of choosing 4 cards from a pack of 52 playing cards

$$={}^{52}C_4 = \frac{52!}{4!48!} = \frac{52.51.50.49}{1.2.3.4}$$
$$= 270725$$

(i) The number of ways of choosing four cards of any one suit

$${}^{=13}C_4 = \frac{13!}{4!9!} = \frac{13.12.11.10}{1.2.3.4} = 715$$

Now, there are 4 suits to choose from, so

The number of ways of choosing four cards of one suit = $4 \times 715 = 2860$

(ii) Four cards belong to four different suits, i.e., one card from each suit.

The number of ways of choosing one card from each suit

$$={}^{13}C_1 \times {}^{13}C_1 \times {}^{13}C_1 \times {}^{13}C_1 = 13 \times 13 \times 13 \times 13 = 13^4$$

(iii) Are face cards

There are 12 face cards

The number of ways of choosing four face cards from 12

 $=^{12}C_4$

=495

(iv) two are red cards and two are black cards,

There are 26 red cards and 26 black cards,

The number of ways of choosing 2 red and 2 black from 26 red and 26 black cards

$$={}^{26}C_2 \times {}^{26}C_2 = \frac{26!}{2!24!} \times \frac{26!}{2!24!} = \frac{26.25}{2} \times \frac{26.25}{2} = 13 \times 25 \times 13 \times 25$$

=105625

19. (99)⁵

To be able to use binomial theorem, let us express 99 as a binomial: 99 = 100 - 1(99)⁵ = $(100 - 1)^5 = {}^{5}C_0(100)^{5}(-1)^0 + {}^{5}C_1(100)^4(-1)^1 + {}^{5}C_2(100)^3(-1)^2 + {}^{5}C_3(100)^2(-1)^3 + {}^{5}C_4(100)^1(-1)^4 + {}^{5}C_5(100)^0(-1)^5$

 $= 1.(100)^{5}-5(100)^{4} + 10.(100)^{3} - 10(100)^{2} + 5.(100) - 1$

= (1000000000) - 5(10000000) + 10.(1000000) - 10(10000) + 5.(100) - 1

- = (1000000000) (50000000) + (1000000) (100000) + (500) 1
- = 10010000500 500100001

= 9509900499

Given: $(3 + ax)^9$ General term in the expansion of $(3 + ax)^9$ $t_{r+1} = {}^9C_r(ax)^r(3)^{9-r}$ Coefficient of $x^r = {}^9C_r(a)^r(3)^{9-r}$ Coefficient of $x^2 = {}^9C_2(a)^2(3)^{9-2} = {}^9C_2a^23^7$ Coefficient of $x^3 = {}^9C_3(a)^3(3)^{9-3} = {}^9C_3a^33^6$ $\frac{Coefficient of x^2}{Coefficient of x^3} = {}^9\frac{C_2a^23^7}{9C_3a^33^6} = {}^3\frac{3.9C_2}{a.9C_3} = {}^3\frac{3.3}{7a} = {}^9\frac{7a}{7a}$

20.
$$x - iy = \sqrt{\frac{a - ib}{c - id}} \Rightarrow (x - iy)^2 = \left[\sqrt{\frac{a - ib}{c - id}}\right]^2$$

Now, $(x - iy)^2 = |x - iy|^2$
 $\therefore (x - iy)^2 = |x - iy|^2 = \left[\left|\sqrt{\frac{a - ib}{c - id}}\right|\right]^2$
But $|x - iy| = \sqrt{x^2 + y^2}$
 $\Rightarrow |x - iy|^2 = \left[\sqrt{x^2 + y^2}\right]^2 = x^2 + y^2 \dots (i)$
 $\left[\left|\sqrt{\frac{a - ib}{c - id}}\right|\right]^2 = \left|\frac{a - ib}{c - id}\right| = \frac{|a - ib|}{\sqrt{c^2 + (-d)^2}} = \frac{\sqrt{a^2 + b^2}}{\sqrt{c^2 + d^2}} \dots (ii)$

From (i) and (ii), we have

$$x^{2} + y^{2} = \frac{\sqrt{a^{2} + b^{2}}}{\sqrt{c^{2} + d^{2}}}$$
$$\Rightarrow \left(x^{2} + y^{2}\right)^{2} = \left[\frac{\sqrt{a^{2} + b^{2}}}{\sqrt{c^{2} + d^{2}}}\right]^{2} = \frac{a^{2} + b^{2}}{c^{2} + d^{2}}$$

OR

We have, $z_1 = 2 - i \text{ and } z_2 = -2 + i$ (i) $\frac{z_1 z_2}{z_1} = \frac{(2 - i)(-2 + i)}{(2 + i)} = \frac{-(4 + i^2 - 4i)}{(2 + i)}$ $= -\frac{3 - 4i}{2 + i} = -\frac{3 - 4i}{2 + i} \times \frac{2 - i}{2 - i}$ $= -\frac{6 - 3i - 8i + 4(i)^2}{4 + 1}$ $= -\frac{6 - 11i - 4}{5} = -\frac{2 - 11i}{5} = \frac{-2 + 11i}{5}$ $\operatorname{Re}\left[\frac{z_1 z_2}{z_1}\right] = \operatorname{Re}\left[\frac{-2 + 11i}{5}\right] = \operatorname{Re}\left[\frac{-2}{5} + \frac{11i}{5}\right] = \frac{-2}{5}$

(ii)

$$\begin{bmatrix} \frac{1}{z_{1}z_{2}} \\ = \frac{1}{(2-i)(-2-i)} = \frac{1}{-4+2i-2i+(i)^{2}} \\ = \frac{1}{-4-1} = -\frac{1}{5} \\ \therefore \operatorname{Im}\left[\frac{1}{z_{1}z_{2}}\right] = \operatorname{Im}\left(-\frac{1}{5}\right) = 0$$

Get More Learning Materials Here :

Regional www.studentbro.in

21.
$$3x^{2}-4x+\frac{10}{7}=0$$

 $\Rightarrow 21x^{2}-28x+10=0$

$$D = (28)^2 - 4 \times 21 \times 10 = 784 - 840 = -56 < 0$$

The equation has complex roots

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-b \pm \sqrt{D}}{2a} = \frac{-(-28) \pm \sqrt{-56}}{2(21)}$$
$$= \frac{28 \pm \sqrt{56i}}{42} = \frac{28 \pm 2\sqrt{14i}}{42}$$
$$= \frac{14 + \sqrt{14i}}{21}, \frac{14 - \sqrt{14i}}{21}$$

22.
$$f(x) = \frac{1}{2 - \sin 3x}$$

We know that

$$-1 \le \sin 3x \le 1 \text{ for all } x \in R$$

$$-1 \le -\sin 3x \le 1 \text{ for all } x \in R$$

$$1 \le 2 - \sin 3x \le 3 \text{ for all } x \in R$$

$$2 - \sin 3x \ne 0 \text{ for any } x \in R$$

$$f(x) = \frac{1}{2 - \sin 3x} \text{ is defined for all } x \in R$$

Hence, domain (f) = R
Range of f : As discussed above

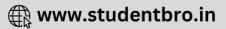
$$1 \le 2 - \sin 3x \le 3 \text{ for all } x \in R$$

$$\frac{1}{3} \le \frac{1}{2 - \sin 3x} \le 1 \text{ for all } x \in R$$

$$\frac{1}{3} \le f(x) \le 1 \text{ for all } x \in R$$

$$f(x) \in \left[\frac{1}{3}, 1\right]$$

Range of (f) = $\left[\frac{1}{3}, 1\right]$



23. System of inequations

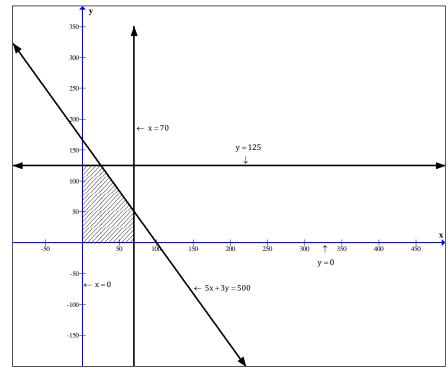
5x + 3y = 500

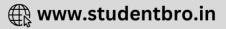
 $x \ge 0, y \ge 0, 5x + 3y \le 500; x \le 70 \text{ and } y \le 125.$

Converting inequations to equations 500-5x

 $x \le 70$ is x = 70 and $y \le 125$ is y = 125.

Plotting these lines and determining the area of each line we get





SECTION - D

Cricketer A			Cricketer B		
Х	= x - 50		Х	= x - 50	
32	-18	324	19	-31	961
28	-22	484	31	-19	361
47	-3	9	48	-2	4
63	13	169	53	3	9
71	21	441	67	17	289
39	-11	121	90	40	1600
10	-40	1600	10	-40	1600
60	10	100	62	12	144
96	46	2116	40	-10	100
14	-36	1296	80	30	900
Total	-40	6660	Total	0	5968

24. Coefficient of variation is used for measuring dispersion. In that case the batsman with the smaller dispersion will be more consistent.

For cricketer A:

Mean = 50 +
$$\left(\frac{-40}{10}\right)$$
 = 46
S.D. = $\sqrt{\frac{6660}{10} - \left(\frac{-40}{10}\right)^2}$ = √650 = 25.5
∴ C.V. = $\left(\frac{25.5}{46}\right) \times 100 = 55$

For Cricketer B:

Mean = 50 +
$$\left(\frac{0}{10}\right)$$
 = 50
S.D. = $\sqrt{\frac{5968}{10} - \left(\frac{0}{10}\right)^2} = \sqrt{596.8} = 24.4$
∴ C.V. = $\left(\frac{24.4}{50}\right) \times 100 = 49$

Since the C.V for cricketer B is smaller, he is more consistent in scoring.

OR

Let x and y be the remaining two observations. Then,
Mean = 8

$$\frac{2+4+10+12+14+x+y}{7} = 8$$

$$42+x+y=56$$

$$x+y=14$$
Variance = 16

$$\frac{1}{7}(2^2+4^2+10^2+12^2+14^2+x^2+y^2)-8^2 = 16$$

$$\frac{1}{7}(4+16+100+144+196+x^2+y^2)-64^2 = 16$$

$$x^2+y^2 = 100$$

$$(x+y)^2+(x-y)^2 = 2(x^2+y^2)$$

$$196++(x-y)^2 = 2 \times 100$$

$$(x-y)^2 = 4$$

$$x-y = \pm 2$$
If x - y = 2 then x + y = 14 and x - y = 2 give x = 8, y = 6
If x - y = -2 then x + y = 14 and x - y = -2 give x = 6 and y = 8.

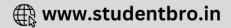
25. There are 4 places to be filled

Th	Η	Т	U
4	3	2	1

The number has to be greater than 5000, so in place 4 only 5 or 7 out of 0, 1, 3, 5, and 7 can be used

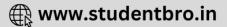
CLICK HERE

- (i) When repetition of digits is allowed The number of choices for place 4 = 2
 - The number of choices for place 4 = 2The number of choices for place 3 = 5The number of choices for place 1 = 5Total number of choices $= 2 \times 5 \times 5 \times 5 = 250$ Now, for the number to be divisible by 5, there should be 0 or 5 in the units place The number of choices for place 4 = 2The number of choice for place 3 = 5The number of choice for place 2 = 5The number of choice for place 1 = 2The number of choice $2 \times 5 \times 5 \times 2 = 100$ P(number divisible by 5 is formed when digits are repeated) $= \frac{100}{250} = \frac{2}{5}$



(ii) When repetition of digits is not allowed The number of choices for place 4 = 2The number of choices for next place = 4The number of choices for next place = 3The number of choices for next place = 2 The number of choices = $2 \times 4 \times 3 \times 2 = 48$ For the number to be divisible by 5 there should be either 0 or 5 in the units place, giving rise to 2 cases. Case I: there is 0 in the units place The number of choices for place 4 = 2Total number of choices for remaining places = $3 \times 2 \times 1=6$ Total number of choices = $2 \times 3 \times 2 \times 1 = 12$ Case II: there is 5 in the units place Then there is 7 in place 4 The number of choices for place 4 = 1The number of choice for remaining places = $3 \times 2 \times 1 = 6$ Total number of choices = 6From case I and II: Total number of choices = 6 + 12 = 18P(a number divisible by 5 is formed when repetition of digits is not allowed = $\frac{18}{48} = \frac{3}{8}$)

26.
$$x \in Q_3$$
 III quadrant and $\cos x = -\frac{1}{3}$
 $\cos 2\theta = 2\cos^2 \theta - 1$
 $\Rightarrow \cos x = 2\cos^2 \frac{x}{2} - 1$
 $\Rightarrow -\frac{1}{3} + 1 = 2\cos^2 \frac{x}{2} \Rightarrow \frac{2}{3 \times 2} = \cos^2 \frac{x}{2}$
 $\Rightarrow \cos \frac{x}{2} = \pm \sqrt{\frac{1}{3}}$
Now, $x \in Q_3$
 $\Rightarrow 2n\pi + \pi < x < 2n\pi + \frac{3\pi}{2}$
 $\Rightarrow \frac{2n\pi + \pi}{2} < \frac{x}{2} < \frac{2n\pi + \frac{3\pi}{2}}{2}$
 $\Rightarrow n\pi + \frac{\pi}{2} < \frac{x}{2} < n\pi + \frac{3\pi}{4}$



Case I:When n is even = 2k(say)

$$\Rightarrow (2k)\pi + \frac{\pi}{2} < \frac{x}{2} < (2k)\pi + \frac{3\pi}{4}$$

$$\Rightarrow \frac{x}{2} \in Q_2$$
Case I:When n is odd = 2k + 1(say)

$$\Rightarrow (2k+1)\pi + \frac{\pi}{2} < \frac{x}{2} < (2k+1)\pi + \frac{3\pi}{4}$$

$$\Rightarrow (2k)\pi + \pi + \frac{\pi}{2} < \frac{x}{2} < (2k)\pi + \pi + \frac{3\pi}{4}$$

$$\Rightarrow (2k)\pi + \frac{3\pi}{2} < \frac{x}{2} < (2k)\pi + \frac{7\pi}{4}$$

$$\Rightarrow (2k)\pi + \frac{3\pi}{2} < \frac{x}{2} < (2k)\pi + \frac{7\pi}{4}$$

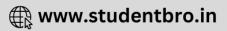
$$\Rightarrow \frac{x}{2} \in Q_4$$

$$\sin \frac{x}{2} = \pm \sqrt{1 - (\cos \frac{x}{2})^2} = \pm \sqrt{1 - (\pm \sqrt{\frac{1}{3}})^2} = \pm \sqrt{1 - \frac{1}{3}} = \pm \sqrt{\frac{2}{3}}$$

$$\ln Q_4 \sin \frac{x}{2} = -\sqrt{\frac{2}{3}}$$
So $\sin \frac{x}{2} = \pm \sqrt{\frac{2}{3}}$

OR

$$\tan\left(\frac{\pi}{4} + \frac{\theta}{2}\right) = \tan^{3}\left(\frac{\pi}{4} + \frac{\alpha}{2}\right)$$
$$\tan\left(\frac{\pi}{4} + \frac{\theta}{2}\right) = \tan^{3}\left(\frac{\pi}{4} + \frac{\alpha}{2}\right)$$
$$\frac{1 + \tan\frac{\theta}{2}}{1 - \tan\frac{\theta}{2}} = \left(\frac{1 + \tan\frac{\alpha}{2}}{1 - \tan\frac{\alpha}{2}}\right)^{3}$$
$$\frac{\cos\frac{\theta}{2} + \sin\frac{\theta}{2}}{\cos\frac{\theta}{2} - \sin\frac{\theta}{2}} = \left(\frac{\cos\frac{\alpha}{2} + \sin\frac{\alpha}{2}}{\cos\frac{\alpha}{2} - \sin\frac{\alpha}{2}}\right)^{3}$$
$$\left(\frac{\cos\frac{\theta}{2} + \sin\frac{\theta}{2}}{\cos\frac{\theta}{2} - \sin\frac{\theta}{2}}\right)^{2} = \left(\frac{\cos\frac{\alpha}{2} + \sin\frac{\alpha}{2}}{\cos\frac{\alpha}{2} - \sin\frac{\alpha}{2}}\right)^{3\times 2}$$



$$\frac{1+2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{1-2\sin\frac{\theta}{2}\cos\frac{\theta}{2}} = \left(\frac{1+2\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}}{1-2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}\right)^{3}$$
$$\frac{1+\sin\theta}{1-\sin\theta} = \left(\frac{1+\sin\alpha}{1-\sin\alpha}\right)^{3}$$
$$\frac{1+\sin\theta-(1-\sin\theta)}{1+\sin\theta+(1-\sin\theta)} = \frac{(1+\sin\alpha)^{3}-(1-\sin\alpha)^{3}}{(1+\sin\alpha)^{3}+(1-\sin\alpha)^{3}}$$
$$\frac{2\sin\theta}{2} = \frac{6\sin\alpha+2\sin^{3}\alpha}{2+6\sin^{2}\alpha}$$
$$\sin\theta = \frac{3\sin\alpha+\sin^{3}\alpha}{1+3\sin^{2}\alpha}$$

27. (i)
$$f(x) = \cos\left(x - \frac{\pi}{16}\right)$$

 $f(x + \delta x) = \cos\left(x + \delta x - \frac{\pi}{16}\right)$
 $f(x + \delta x) - f(x) = \cos\left(x + \delta x - \frac{\pi}{16}\right) - \cos\left(x - \frac{\pi}{16}\right)$
 $= -2\sin\left(\frac{\left(x + \delta x - \frac{\pi}{16} + x - \frac{\pi}{16}\right)}{2}\sin\left(\frac{x + \delta x - \frac{\pi}{16} - \left(x - \frac{\pi}{16}\right)\right)}{2}\right)$
 $= -2\sin\left(\frac{\left(2x + \delta x - \frac{\pi}{8}\right)}{2}\sin\frac{\delta x}{2}\right)$
 $\frac{f(x + \delta x) - f(x)}{\delta x} = -\frac{2\sin\left(\frac{\left(2x + \delta x - \frac{\pi}{8}\right)}{2}\sin\frac{\delta x}{2}\right)}{\delta x} = \frac{\sin\left(x + \frac{\delta x}{2} - \frac{\pi}{16}\right)\sin\frac{\delta x}{2}}{\frac{\delta x}{2}}$
 $\lim_{\delta x \to 0} \frac{f(x + \delta x) - f(x)}{\delta x} = -\lim_{\delta x \to 0} \sin\left(x + \frac{\delta x}{2} - \frac{\pi}{16}\right)\lim_{\delta x \to 0} \frac{\sin\frac{\delta x}{2}}{\frac{\delta x}{2}}$
 $= -\sin\left(x - \frac{\pi}{16}\right)$

CLICK HERE

r www.studentbro.in

(ii)
$$\lim_{x \to \frac{\pi}{2}} \frac{5^{\cos x} - 1}{\frac{\pi}{2} - x} = \lim_{y \to 0} \frac{5^{y} - 1}{\frac{\pi}{2} - \cos^{-1} y}$$
 [Let cosx=y]
$$= \lim_{y \to 0} \frac{5^{y} - 1}{\sin^{-1} y}$$

$$= \frac{\lim_{y \to 0} \frac{5^{y} - 1}{y}}{\lim_{y \to 0} \frac{\sin^{-1} y}{y}}$$

$$= \frac{\ln 5}{1}$$

$$= \ln 5$$

28. The three lines whose equations are $y = m_1 x + c_1 \dots (1)$, $y = m_2 x + c_2 \dots (2)$ and $y = m_3 x + c_3 \dots (3)$ are given The point of intersection of (1) and (2) can be obtained by solving $y = m_1 x + c_1$, $y = m_2 x + c_2$ $\Rightarrow m_1 x + c_1 = m_2 x + c_2$

$$\Rightarrow m_1 x + c_1 - m_2 x + c_2$$

$$\Rightarrow m_1 x + c_1 - m_2 x - c_2 = 0$$

$$\Rightarrow (m_1 - m_2) x = c_2 - c_1$$

$$\Rightarrow x = \frac{c_2 - c_1}{m_1 - m_2}$$

$$y = m_1 \left(\frac{c_2 - c_1}{m_1 - m_2}\right) + c_1 = \frac{m_1 c_2 - m_2 c_1}{m_1 - m_2}$$

$$\therefore \text{ The point of intersection} = \left(\frac{c_2 - c_1}{m_1 - m_2}, \frac{m_1 c_2 - m_2 c_1}{m_1 - m_2}\right)$$

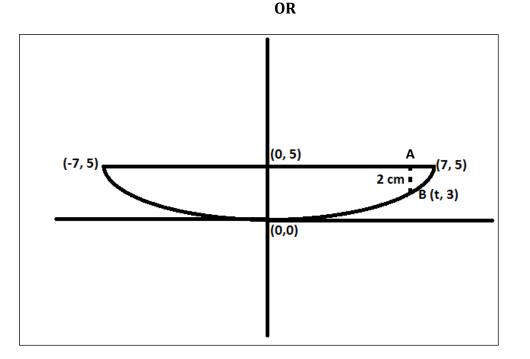
If this point also lies on line (3), then the three lines are concurrent and it is the point of concurrence

We substitute
$$\left(\frac{c_2 - c_1}{m_1 - m_2}, \frac{m_1c_2 - m_2c_1}{m_1 - m_2}\right)$$
 into $y = m_3x + c_3 \dots (3)$, to verify
 $\frac{m_1c_2 - m_2c_1}{m_1 - m_2} = m_3\left(\frac{c_2 - c_1}{m_1 - m_2}\right) + c_3$
Som₁c₂ - m₂c₁ = m₃(c₂ - c₁) + c₃ (m₁ - m₂)
 $\Rightarrow m_1c_2 - m_2c_1 = (m_3c_2 - m_3c_1) + (c_3 m_1 - c_3 m_2)$
 $\Rightarrow m_1(c_2 - c_3) + m_2(c_3 - c_1) + m_3(c_1 - c_2) = 0$
is the required condition for concurrence.

Get More Learning Materials Here :

Regional www.studentbro.in

(ii) Point of concurrency is
$$\left(\frac{c_2 - c_1}{m_1 - m_2}, \frac{m_1c_2 - m_2c_1}{m_1 - m_2}\right)$$



Let the vertex be at the origin and the vertical axis be along the y-axis. Therefore general equation is of the form $x^2 = 4ay$.

Since deflection in the centre is 5 cm, so (7, 5) is a point on the parabola

Therefore it must satisfy the equation of parabola i.e 49 = 20a

i.e a = 49/20

So the equation of parabola becomes

$$x^2 = 49/5y = 9.8 y$$

Let the deflection of 2 cm be t cm away from the origin. Let AB be the deflection of beam,

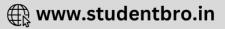
So the co-ordinates of point B will be (t, 3)

Now, since the parabola passes through (t, 3), it must satisfy the equation of parabola,

Therefore $t^2 = 9.8 \times 3 = 29.4$

 \Rightarrow t = 5.422 cm

Therefore distance of the deflection from the centre is 5.422 cm



29. Let P(n):
$$x^{2n} - y^{2n}$$
 is divisible by x + y
P(1) = $x^2 - y^2 = (x + y)(x - y)$
So P(1) is divisible by $(x + y)$
Now we assume P(k): $x^{2k} - y^{2k}$ is divisible by x + y
To Prove :P(k + 1): $x^{2(k+1)} - y^{2(k+1)}$ is divisible by x + y
 $x^{2(k+1)} - y^{2(k+1)} = x^{2k+2} - y^{2k+2}$
 $= x^2 x^{2k} - x^2 y^{2k} + x^2 y^{2k} - y^2 y^{2k}$
 $= x^2 (x^{2k} - y^{2k}) + y^{2k} (x^2 - y^2)$
 $(x^{2k} - y^{2k})$ is divisible by x + y from P(k)
 $x^2 (x^{2k} - y^{2k})$ is divisible by x + y from P(t)
 $y^{2k} (x^2 - y^2)$ is divisible by x + y from P(1)
 $\therefore x^2 (x^{2k} - y^{2k}) + y^{2k} (x^2 - y^2)$ is divisible by x + y
So, P(k + 1): $x^{2(k+1)} - y^{2(k+1)}$ is divisible by x + y

Hence by principle of mathematical induction it is proved that $x^{2n} - y^{2n}$ is divisible by (x + y).

